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A similarity solution is obtained for a model of the turbulent starting plume 
comprising a steady plume feeding mass, momentum and buoyancy into a vortex 
ring. Bulk equations representing the time rate of increase of ring momentum 
and ring buoyancy, together with equations (dependent on broad features of the 
ring structure) representing the velocity of propagation and time rate of circula- 
tion increase are used to determine the motion of the vortex ring. The similarity 
solution is found to  exist only for diffuse distributions of vorticity and buoyancy 
within the ring. Further, the ratio of ring velocity to plume velocity, which is 
assumed to be constant, is found 60 take a value which agrees with that obtained 
from experimental observations. 

1. Introduction 
Early theories of atmospheric convection, and in particular cumulus convec- 

tion, were concerned with two fundamentally different flow types. The first type 
of flow considered was a steady turbulent plume of small spread angle which 
entrains ambient fluid across its edge. This type of model has the advantage of 
considering a steady source of heat flux; however, the small spread angle and 
lack of top structure limit the model in terms of application to cumulus dynamics. 
The second type of flow considered was the thermal, a name given by glider 
pilots to a single heated volume, or bubble, of air which ascends in an unsteady 
manner. Thermals are known to entrain fluid partly through their sides and top 
but primarily through the rear. This rising and expanding flow is more easily 
recognized as being of a similar form to  cumulus-type convection but has no 
continuing source of buoyancy. 

Turner (1962) pointed out that improved cloud models should consider certain 
features of both the above models and that, despite the fact that present plume 
models and thermal models have a different functional dependence of velocity 
upon height, the two may be combined to give a similarity solution for a starting 
plume. In  his model the plume feeds both momentum and buoyancy into the 
cap, or thermal, through its base, the thermal moving at a constant fraction of 
the mean velocity of the plume. While Turner was able to  show the model to be 
feasible in terms of a similarity solution, he was not able to describe the motion in 
the thermal beyond saying that it was like that in a spherical vortex. It is pro- 
posed to extend Turner’s model, by considering the thermal to be a vortex ring 
of more general type, in order to determine how diffuse the distribution of 
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vorticity in the thermal must be for the thermal to achieve self-similarity and 
also to compare the theoretical value of the velocity ratio with that observed by 
Turner. 

The equations of this more general type of isolated vortex ring are presented 
in 3 3, recent progress in the theory of vortex rings enabling the vortex motion 
to be predicted with greater accuracy than has been previously possible. McGregor 
(1974) has pointed out that the velocity of propagation of a vortex ring depends 
not only on the ring circulation and ring radius, but also on certain broad features 
of the vorticity distribution within the ring itself. A survey of elements of vortex- 
ring structure by Morton (1971) describes the relationships of bulk equations and 
the possible states of self-similarity. It will be convenient here to make use of 
Morton’s expression for the time rate of change of circulation of the ring, which 
depends upon the balance obtained between buoyant generation of vorticity 
and loss of vorticity by diffusion across the axis of symmetry. The third equation 
required to specify the motion is the bulk equation described by Lamb (1932) 
which represents the momentum of all fluid carried with the ring. 

The construction of the model is outlined in $4,  the vortex ring being assumed 
to move at  a constant fraction of the mean velocity of the plume, which then 
feeds mass, momentum, vorticity and buoyancy into the thermal through its 
base. The extra ring-wise vorticity advected from the plume acts to modify the 
circulation while the advected momentum and buoyancy act to increase the total 
momentum and buoyancy of the ring, under the assumption that all quantities 
become effective vortex-ring quantities as soon as they cross the thermal’s 
boundary. The result is a modified set of equations representing the vortex 
momentum, velocity of propagation and time rate of increase of circulation. 

Further progress with the analysis requires the vorticity and buoyancy 
profles in the ring to be specified so that the rates of buoyant generation and 
diffusive loss of circulation may be found. These profiles are presented in $ 5, 
and various associated length scales are calculated. However, the exact forms 
of the profiles are not critical, as the equations of motion depend only on quanti- 
ties which are averaged throughout the thermal. Once the turbulent diffusivity 
has been appropriately defined, asymptotic solutions to the modified equations 
of motion are found provided that the circulation increases as (time)*. 

Removing all dimensional dependence in 3 6 then yields expressions which 
enable the ratio of thermal t o  plume velocity to  be determined in terms of known 
quantities and the concentration of vorticity and buoyancy within the vortex. 
These expressions constitute the solution to the problem, the remaining sections 
dealing with the thermal entrainment rate, previous experimental results, the 
present theoretical results and the conclusions. 

2. Equations of the steady plume 
Similarity solutions for steady turbulent forced plumes were investigated by 

Morton, Taylor & Turner (1956) using equations representing conservation of 
mass, momentum and buoyancy. Since then, solutions to this set of equations 
have been refined by Morton (1959) and Morton & Middleton (1973). These 
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models assume that local variations in buoyancy are small compared with some 
reference value; that profiles of mean vertical velocity and mean buoyancy are 
each of similar form at all plume cross-sections; that there exists an entrainment 
constant relating the rate of inflow to the mean vertical velocity, and that 
Reynolds number similarity holds for the turbulent fluid within the plume. The 
above assumptions are fully discussed in the above references and in a review 
written by Turner (1969) and, although the resultant models are rather idealized, 
there is evidence t o  suggest that they give serviceable results. Accordingly, for 
the proposed starting-plume model, it is sufficient to  use the results for an idealized 
simple plume. 

Cylindrical polar co-ordinates (a, 8, z )  with z vertically upwards are used and 
the plume motion is assumed to be axisymmetric and without swirl. Gaussian 
profiles, representing observed values across the plume, are chosen to charac- 
terize profiles of mean vertical velocity and mean buoyancy and these may be 

(1) 
written as 

and 

As (1) indicate, the buoyancy may be due to either a temperature excess or 
a density deficiency, with the subscript e representing ambient values and p, T 
and /3 representing density, temperature and the coefficient of cubical expansion 
respectively. For simplicity the lateral spread of heat is assumed to be the 
same as the lateral spread of vertical momentum, the velocity profile and 
the buoyancy profile then both being characterized by the same radial length 
scale b(z).  Rouse, Yih & Humphreys (1952) have, however, conducted experi- 
ments above isolated gas flames in air and found the lateral spread of heat to be 
greater than that of the vertical momentum by a factor of 1.16. Neglect of this 
factor should have no qualitative effect on the solution and it is anticipated that 
the quantitative effect should be well masked by other approximations. 

Following Morton et al. (1956)) the rate of inflow per unit height of ambient 
fluid into the plume is assumed to be 27rrbaU, the quantity a being the entrain- 
ment constant. For Gaussian profiles its value is thought to be approximately 
a = 0.09 but there is evidence to suggest that a is not the same for all kinds of 
forced plume (see, for example, Turner 1969; Abraham 1965; Morton 1959). 
Thus it will be necessary to examine the dependence of the solution on the 
entrainment constant, 

With the above assumptions, equations of conservation of mass, momentum 
and buoyancy may be written as 

1 u(z, a) = U ( z )  exp ( - a2/b2) 

P!@ - T,) = P,-lS(P, -PI = m9 exp ( - do. 

d d 
- (b2U) = 2abU, $ (b2U2) = 2b2P, - (b2UP) = 0. 
dz dz 

As it is intended to couple plume and thermal equations, it  is necessary to con- 
vert the plume equations to Lagrangian form since the thermal equations will all 
be derived on a time-dependent basis. 

These Lagrangian equations may be derived from (2) by considering the 
change of variable from z to t given by d/dz = U-Id/d t ,  or may be found by 
consideration of an element of fluid as it moves up the plume. Ideally, a Lagran- 
gian approach relies upon an element of fluid being able to retain its identity as it 
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moves with the flow. While this is not strictly true in a plume the vertical diffusion 
is significantly less than the radial diffusion and a Lagrangian representation 
may be thought to be physically reasonable, but, in any case, the transformation 
is primarily one of convenience and is not required to describe the flow exactly. 

The Lagrangian conservation equations are thus 

d 
- ( b 2 U )  = 2abU2, 
at 

g ( b 2 U 2 )  = 2b2UP, 
d 
- ( b 2 U P )  = 0. 
dt (3) 

Let the mass, momentum and buoyancy fluxes be denoted by W ,  2M and H in 

W = b'U, .M = +b2U2, P = Qb2UP. (4) the form 

Solutions to (3) are then given by 

(5) 
and 

where the zero subscripts denote values at the actual plume source. These solu- 
tions enable fluxes to be calculated as a function of both tihe source conditions 
and the elapsed t,ime interval since the plume fluid element left the source. 

One further aspect of the Gaussian velocity profile will be of interest when 
comparing theory with experiment. The volume flux calculated using the 
Gaussian velocity profile V(z)  exp ( - a2/b2) and evaluated over an infinite cross- 
section is nb2U. If this volume flux is considered as being effective over tihe more 
realistic cross-sectional area of nb2, then the value U ( z )  must be considered as 
the average value rather than the maximum value. Thus the maximum velocity 
U ( z )  which appears in the analysis will actually represent the average value 
observed in experiments. 

I F =Po,  M = M0+24(t-t,-,) 

w = 2% 5-4 a*F;4 [M, + 2Ho(t - to)]%, 

3. Equations of the isolated vortex ring 
The cap of the starting plume is considered t o  have the structure of a vortex 

ring or thermal. In  early work on thermals, bulk properties were thought suffi- 
cient to determine the flow characteristics uniquely, but more recent work by 
McGregor (1974) shows the velocity of propagation to depend not only on the 
ring circulation but also on certain length scales associated with the vortex 
structure. McGregor experimented numerically with many different vorticity 
distributions and determined the mean velocity of propagation of a vortex ring 
to be most accurately described by an equation of the form 

The ring circulation is denoted by K ,  and the ring radius 3, ring sub-radius and 
average ring height X are defined by the following equations: 

I JJ" 2% dcr dz - IJ" zw d g  dz 
h2 = Z =  

JJ cT2w da dz 

/ J w d a d z  

R 2 =  J"1wdrdx ' j j - o d d  ' JJ 0 da dz ' 
- j-JawdcTa.2 
a =  a = &(a2 - 3 2 ) &  + f ( F . 2  - 22) t .  

Here the integrals are evaluated over the entire region of vorticity w.  

(7) 
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In  a survey paper on vortex-ring structure Morton (1971) derived a vorticity 
conservation equation of the form 

The time rate of increase of circulation thus depends upon the balance obtained 
between diffusion of vorticity across the axis of symmetry and buoyant genera- 
tion of vorticity resulting from the axial temperature being greater than the 
ambient value. Here the turbulent diffusivity is represented by vT. 

Some common limiting types of vortex ring are easily identified by examina- 
tion of (8). A convective vortex is one in which the vorticity is concentrated 
primarily in a thin toroidal core, the diffusion of vorticity across the axis of 
symmetry then being zero. For convective buoyant vortices there is also zero net 
buoyant generation of vorticity and hence the ring circulation remains constant. 
These types have been considered by Turner (1957) for both the laminar and the 
turbulent cases. On the other hand a diffusive vortex has vorticity and buoyancy 
spread more generally through the migrating fluid and is at  a later stage of 
turbulent decay. According to the relative distributions of vorticity and buoyancy 
within the vortex the circulation may remain constant as in a weak thermal 
vortex (see, for example, Morton 1960) or may decrease as in a neutral diffusive 
vortex. All distributions of vorticity must be zero on the axis of symmetry and 
have a toroidal maximum at some finite radius, regardless of whether the vortex 
is convective or diffusive. It is assumed in the following that vorticity and 
buoyancy are diffused equally by the turbulence, both distributions then having 
the same spread. The buoyancy profile will, nevertheless, differ in general form 
from the vorticity profile for vortices which are diffusive, since only a single 
maximum of the temperature excess will exist and this will be situated on the 
axis of symmetry. For thin ring vortices the general form will be the same, the 
temperature excess also exhibiting a toroidal maximum and a zero on the axis of 
symmetry. 

The equation giving the impulse of all the fluid moving with a vortex ring was 
developed by Lamb (1932, p. 239) and is 

P, = npKR2, (9) 

where p is the mean density of the advected fluid. Here all variations in density 
are assumed small compared with the ambient density and the radial length 
scaleRis defined as in (7). In the case of an isolated buoyant thermal the buoyancy 
force acts to  increase the thermal momentum, the time rate of change of 

momentum being dP,ldt = P A  (10) 

where pe is the ambient fluid density and Pc is the total buoyancy of the thermal. 

4. Equations of the modified vortex ring 
The model is posed as consisting of a thermal propagating at  the head of 

a steady plume, the general outline of the turbulent flow having the shape of an 
ice-cream cone. The thermal moves at a constant fraction of the mean velocity 
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FIGURE 1. Diagram of a starting plume, showing the visible radius r of the thermal, the 
mean thermal velocity w and the theoretical values of the plume radius b and mean plume 
velocity U ,  at a height equivalent to the thermal centre. The mean velocity w b  of the 
thermal’s base and the mean plume velocity Ub at that height are also shown. 

of the plume and the plume thus feeds mass, momentum, circulation and 
buoyancy into the thermal. 

A general idea of the construction of the model is given in Sgupe 1, where 
r denotes a characteristic radius of the thermal, whose mean vertical velocity 
is v. This radius must of course be related to the length scales defined in (7) but 
for the time being it is sufficient to define Y as being the average visible radius of 
the thermal, which is assumed to be spherical. As the thermal volume is increasing 
with time the average velocity vb of the thermal base will be somewhat smaller 
than v. If ub denotes the mean plume velocity in a steady plume at  a height 
equivalent to that of the base of the thermal, the basic assumption is readily 

(11) 
expressed as 

where A ,  is a constant whose value is less than one. It follows from (1 1)  that the 
mean thermal velocity v is proportional to the mean plume velocity U, a t  a height 
equivalent to the thermal centre and so 

v b  = A b U b ,  

v = AU,, (12) 

but, since Turner’s measurements were of the cap front velocity vt and the steady 
plume velocity U, at the top of the cap, the third equation 

t+ = AtU, (13) 

is also required in order to compare theoretical and experimental results. The 
relationships between A ,  A,  and A, may readily be found by considering the 
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plume equations (2) and the rate of growth of the cap radius. If a‘ = drldz is the 
semi-spread angle of the visible cap edge then these relationships are 

A, = A( 1 -a’)*, A,  = A( 1 +a’)%. (14) 

Photographs taken by Turner (1962) seem to indicate that the thermal grows 
in step with the plume, the value of the spread angle of the thermal bearing 
a constant relation to the plume spread angle. This may readily be expressed as 

r = Db, (15) 

where b is the characteristic plume radius and D is a constant. 
The Lagrangian solutions (5) give the dependence upon time of the mass, 

momentum and buoyancy fluxes as a particular element moves up the plume. 
These values are required at the height of the thermal’s base, but the plume fluid 
element at  this height at any particular time is younger than the thermal by 
a factor of A,. Thus if t represents the time which the thermal has +aken to rise 
from its source, then the element of plume which has just arrived at  the thermal’s 
base must have taken a time A, t to rise from the same source. All plume quanti- 
ties evaluated at  the thermal’s base may therefore be written as a function of the 
time the thermal has taken to rise by replacing the time variable in the plume 
quantities by Abt. 

Asymptotic solutions for large times are required in order that the flow is able 
to settle into a similarity state and so the equations of conservation of momentum, 
buoyancy and mass in the plume a t  the thermal’s base are approximated by 

and 

where as before the subscript b denotes values a t  the thermal’s base and t repre- 
sents the time of rise of the thermal. 

The equations for the thermal of the starting plume must now be modified to 
allow for the extra buoyancy and momentum supplied by the plume. As a result 
the buoyancy of the thermal increases with time rather than remaining constant 
as in the case of an isolated thermal and the asymptotic form for the thermal 
buoyancy is 

(17) 

Similarly, the rate of change of thermal momentum has a contribution from the 
advected plume fluid but there is also a buoyant-generation contribution. The 
asymptotic thermal momentum is thus 

1p, = nP0( I - A,) t. 

p, = Pn(&+Ab) (1-Ab).&t2* (18) 

Consider next the circulation equation for the cap. In addition to the diffusion 
term and the generation term for an isolated thermal, there will also be a contribu- 
tion to the thermal oirculation resulting from the assimilation of plume fluid 
which has ring-wise vorticity. The ring-wise circulation of a plume, evaluated 
around a contour consisting of a unit length segment up the plume axis together 
wit,h two radial segments extending to and joining at infinity, is given by the 
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magnitude of $he plume velocity U .  At the thermal’s base this circulation is U,, 
and is advected into the thermal with velocity ub - v,. Thus the rate of change of 
circulation resulting from the advected plume fluid is ub( ub - v,,), which, with 
the aid of (4) and (16), may be put in the asymptotic form 

ub(U,-v,) = (5/4a)P8(1-A,)A,8t-8. 

The three modified equations representing the motion of the thermal of 
a starting plume may now be rewritten in the form 

5. Vorticity and buoyancy distributions in the thermal 
In order to proceed further with the analysis, distributions of vorticity and 

buoyancy are required for the thermal. Gaussian-type distributions are proposed, 
the distributions of vorticity and buoyancy both containing exponential functions 
having the same mean go and same standard deviation L, in accordance with 
the assumption of equal diffusivities of buoyancy and vorticity made earlier. The 
distributions for CT > 0 are thus assumed to be of the form 

where K and Fc are the thermal circulation and buoyancy defined earlier. 
It must be recognized that the information that the equations of motion (19) 

require from the distributions (20) is information which is of an averaged rather 
than a specific nature. This is more easily seen when one considers that the length 
scales (7) are determined by integrals involving weighted averages of the vorticity 
distribution, the integrals being evaluated over the entire vorticity field. The 
terms representing diffusive loss and buoyant generation of vorticity are also 
average values obtained by integration of the vorticity gradient and temperature 
excess along the axis of symmetry from the top to the bottom of the thermal. 
Thus the exact choice of distributions cannot be a critical factor in determining 
the equations of motion, as the model depends only on certain broad features of 
these distributions. 

Define now a parameter B such that L = Bc0. This parameter will then define 
uniquely the spread (diffuse or concentrated) of vorticity and buoyancy through- 
out the thermal and in conjunction with the ratio D, defined in (15), will specify 
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F I G ~  2. Profile shapes of dimensionless vorticity or2/K (dashed lines) and dimensionless 
buoyancy /3g(T - T,) PIPc (dotted lines) proposed in (20) for the modified vortex ring. 
The profiles are plotted against the radial variable u for various values of Z/Z, the ratio of 
radius to sub-radius. (a) z/E = 1.5. ( b )  Z / E  = 1.75. (0 )  ??/ti = 2.0. (d )  z/ti = 4.0. 

the different similarity states that a starting-plume thermal may attain. The 
length scales of (7) are then given by 

CT = u0w1, R2 = u;w2, Z = z0, 

h2 = + 4B2a;, Z = go w,, (21) 1 
- 

where the weighting coefficients wl, w2 and w, are given by 

(22) I w, = (erfB-l)-l, 
w2 = 1 + iB2 + B exp ( - B-2) (d erf B-l)-l, 

W, = $[(w2 - w:)* + 3B2-$]. 
In  order that the reader may more easily understand how the profile shapes (20) 

are affected by variation of the radius 3 and sub-radius Z, figure 2 plots the 
dimensionless vorticity w2/K and dimensionless buoyancy pg( T - T,) r3/c 
against the radial variable u for various values of TIC.  To simplify comparison, 
dl profiles have been drawn with L = 1. Equations (21) and (22) show that the 
value of B uniquely defines T / C ,  but it is thought that the ratio Eli% of radius to 
sub-radius is an easier parameter to comprehend physically and, in any case, 
B/Z represents a quantity more directly pertinent to the equations of motion. 
It must be emphasized once more, however, that the equations of motion depend 
only on certain mean quantities associated with the profile shapes and not on 
the exact shapes themselves. 
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It is necessary to define the characteristic thermal radius r in terms of the 
ring radius 8 and sub-radius 3. It is thought sufficient to approximate this visible 

r = 5 + Z  ( 2 3 )  
thermal radius by 

since this expression is the simplest available ; however this approximation may 
be assessed only after the solutions have been found. Comparison with (15) shows 
the ratio of the visible thermal radius 3 +a t o  the characteristic plume radius b 
to be given by the ratio of spread angles, cd/:a, and thus the similarity constant D 
is given by D = 5a’/6a. 

Use of (20) and (21) also enables the integrals representing diffusive loss 
and buoyant generation of circulation to  be evaluated for the circulation equa- 
tion (19). Further manipulation of (21)  and the asymptotic plume equations 
enables the quantities R2, r2 and 3 to be represented as 

and 

Equations (19) may now be written in terms of the circulation K in the form 

and 

where the coefficients A,, A, and A, are given by 

(25 )  

A,  = 8dB-lexp ( - B-,), 
A ,  = 2dB(  I -A, )  (wl + to3)-, exp ( - B-,) 

and A, = 1*25&( 1 -A,) A:*. 

It remains to determine the form of the turbulent diffusivity vT, which has 
dimensions of (length), (time)-l. It is appropriate to  scale this quantity according 
to the characteristic thermal velocity scale v and the thermal length scale Sr;, the 
sub-radius, which represents the spread of vorticity and buoyancy about the 
mean radius 8. Thus 

where E is a dimensionless eddy-diffusivity constant dependent on the similarity 
state. For large times vT approaches the asymptotic value 

VT = E Z V ,  (26 )  

vT = 2EASDw3(wl + w3)-lP$i3. (27) 
For similarity, ( 2 4 )  must hold for large times and this is only possible if the 

circulation increases as (time)&. Thus the asymptotic starting-plume vortex 
requires an increase in vorticity with time rather than the decrease which is 
normally expected for an isolated vortex. 
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6. Scaling 

(24) and (27), the simple transformations 

must be applied. The time rate of increase in circulation may then be represented 
as 

the value of H being constant for a similarity state. 
Choice of No and Po as a base for transformation to dimensionless form is rather 

arbitrary, there being three choices of base available from the source values 
M,, F, and W, of the momentum flux, buoyancy flux and mass flux. If the lateral 
spread of momentum is taken as being the same as the lateral spread of buoyancy, 
as assumed earlier, then reference to Morton & Middleton (1973) shows the 
source quantities to  be related by 

In order to  remove the time dependence and the dimensional quantities from 

t = M , F ; ~ T ,  K = M ~ K  (28) 

K = H d ,  (29)  

for the case of a simple plume. Thus it does not matter which transformation 
base is used, and the base (M,, Fo) is chosen for convenience. 

Substitution of ( 2 8 )  and (29) into (24) and (27) enables all time-dependent and 
other dimensional quantities to be removed and the resultant equation represen- 
ting the increase in circulation is 

This equation has been normalized with respect to H ,  the dimensionless rate of 
increase in circulation, in order that the relative magnitudes of the terms 
representing buoyant generation, advection and diffusion of circulation may 
be more readily compared. 

The transformed equations of vortex momentum and vortex propagation 
give the dimensionless rate of circulation increase as 

and 

Equations (30)-(32) constitute the solution to the problem in terms of three 
equations and six unknown quantities. This solution is found and discussed in 
the section dealing with theoretical results ($9).  

7. The thermal entrainment rate 
It will also be informative t o  calculate the fraction of fluid drawn into the 

thermal frtom the plume and thus to find the fraction of ambient fluid entrained 
directly into the thermal. If V, denotes the volume of plume fluid in the thermal, 
then the rate of advection of plume fluid into the cap is given by 

at7,pt = nW,( 1 - Ab), 
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the factor 1 - A b  arising from the relative motion of the thermal’s base and the 
plume at  that height. The rate of change of cap volume V ,  however, is given by 

dr dr dZ dV 
at at dz at ’ 
- -  - 4rr2 - = 4 7 ~ ( D b ) ~  - - 

where arid5 is the visible angle of spread a’, dZldt = v is the mean velocity of 
propagation of the thermal and use has been made of (15). A little manipulation 
shows the product b2v evaluated at a height equivalent to the thermal centre to 
be proportional to the plume mass flux W, evaluated at  this same height. Thus 

d Vldt = 4nD2a‘AK, 

and the amount of fluid in the thermal which has come directly from the plume 
is given by 

8. Previous experimental results 
The value of B determines A,, A ,  and A ,  and also the weighting coefficients 

w,, w2 and w,. Thus (30)-(33) involve six independent unknowns: A, a’, a,  B, 
H and E.  

The ratio A of cap to plume velocity is one of the easier quantities to measure 
experimentally and Turner (1962) was able to obtain results for this ratio from 
his work. Salt solutions of different density were used for 39 runs, the velocity 
changing by a factor of three as the density changed. It was found convenient to 
measure the ratio of the velocity of the thermal front to the mean velocity of 
a filament of dye at  the plume axis in the steady flow behind, these measurements 
being taken at  the same height. This was achieved by following first the front 
and then a filament of dye in the steady flow behind and timing the motion 
between fixed marks with a stop watch. In this way Turner found the velocity 
ratio, as defined by (13), to be 

A, = 0.61 & 0.05. 

The half-angle of spread a’ of the visible edge of the cap was also measured for 
a variety of flow rates and, from 18 runs, was found to be 

a’ = 0.18 0.03. 

The plume entrainment constant a, which is a direct measure of the semi-angle 
of spread +a of a simple plume having, in this case, Gaussian profiles of mean 
vertical velocity and buoyancy, has been evaluated experimentally by many 
workers. Morton et al. (1956) calculated, from their own experimental results 
and from profiles plotted by Schmidt (1941) and Rouse et al. (1952), values of a 
pertaining to plume flows of 0.093, 0.125, and 0.085 respectively. It was later 
argued by Morton (1959) that a value of cy. most representative of the basic 
turbulent mixing processes should be found from experimental results for jets. 
Results found by Reichardt (1942), Squire (1950), Kuethe (1935) and Ruden 
(1933) indicate values of a of 0.081, 0-084, 0.079 and 0.083 respectively. More 
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recent experiments by Ricou & Spalding (1961) suggested that the entrainment 
rate for buoyant plumes was somewhat greater than that for jets but found a 
comparatively low value of a = 0.057 for the jet. 

The above results indicate that a most probably lies between 0.08 and 0.12 
and similarity solutions corresponding to values of a in this range will be found in 
order to  examine the dependence of the solutions on a. It would seem, however, 
that the most likely value of a is approximately 0.09, and this has been used by 
Turner (1962). 

Three quantities remain, none of which may easily be found experimentally. 
Of these, B is a parameter which defines 3/Guniquely, and thus is a direct measure 
of the spread of vorticity within the thermal. Equations (21) and (22) show that 
for highly diffusive vortices 3/Z takes the value 1.37, but may approach values 
of order 5 for thin ring vortices of common smoke-ring type. Computationally 
B is a far easier variable to use than 3/C, while the latter is easier to  interpret 
physically. Thus B appears explicitly in the A,  and wi, but results are plotted 
against values of 3/Z rather than B. 

Non-dimensional values of the time rate of increase in circulation H and the 
turbulent diffusivity constant E would appear to be extremely difficult to measure 
experimentally and to  the author’s knowledge no theoretical values have been 
calculated. 

9. Theoretical results 
Solution of the equations may readily be achieved by eliminating H from (31) 

and (32). A choice of values for a’ and a then allows the velocity ratio A, to be 
plotted against 51% Appropriate values may then be substituted into either (31) 
or (32) to determine H ,  and then into (30) to determine the final unknown 
quantity E .  

In  order to interpret the results, however, it is preferable first to consider 
a plot of E 2)s. 3/C for various values of a and a’. For the similarity solution 
being sought, the turbulent diffusivity constant E is expected to be a universal 
constant over the region of validity of the model. Examination of figure 3 shows 
E to be approximately constant over the experimental range of a’ and for various 
a in the region 1-5 < 3/Z < 2-0, with the average value of the minima of E 
occurring at  approximately 3/li = 1.75. This value is consistent with the assump- 
tion made earlier that the vorticity in the thermal is diffuse, and agrees with 
intuitive ideas that a turbulent flow which has obtained a state of self-similarity 
must have existed for a sufficiently long time that turbulent diffusion dominates 
the flow. 

A point of interest arising from the model is the form that the eddy diffusivity 
is assumed to take. In  order to agree with the similarity solution the diffusivity 
must increase as t i .  Consequently it would have been sufficient to have assumed 
the diffusivity to be proportional to the product of any characteristic thermal 
length scale and any characteristic velocity scale or, alternatively, to be propor- 
tional to1 the ring circulation. The actual choice made for the eddy diffusivity 
leads to  possible similarity solutions in the range 1.5 < 3/Z < 2.0 and it seems 
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unlikely that choice of a different scaling would have made much difference to 
this range, all length scales being proportional as are all velocity scales in a simi- 
larity solution of this type. 

It can be seen from figure 4 that the velocity ratio A,  is not very sensitive to 
changes in 3/Z, the change in A, amounting to approximately 2 %  over the 
region 1.5 < 3/ii < 2-0. Thus the choice of 3/ii = 1.75 would seem to be the most 
representative and realistic estimate of the vorticity concentration which exists 
in the vortex ring of a starting plume which has achieved similarity. 

In order to examine the balance between vorticity production and loss through 
the cap, the terms in the circulation equation (30) have been plotted as a function 
of F/Z in figure 5.  It may readily be noted that, while the diffusive term is larger 
in magnitude than any other individual term, the sum of the terms representing 
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FIGURE 4. Showing the velocity ratio A ,  plotted against the thermal semi-spread angle U' 
for different values of the vorticity distribution Z/Z. u = 0.10. 
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FIGURE 5. Relative magnitudes of terms in (30) representing (a) diffusive loss, (b )  buoyant 
generation, (c)  edveotion and (d )  resultant rate of increase in circulation, normalized with 
respect to the dimensionless rate of increase in circulation H .  u = 0.10, u' = 0.18. 

vorticity generation (due to buoyancy) and vorticity advection (from the plume) 
gives a resultant increase in circulation with time. This contrasts with the usual 
situation found in diffuse vortex rings, where the circulation decreases with time 
as vorticity diffuses across the axis of symmetry. 

The dependence of the non-dimensional rate of increase of circulation on a, a' 
and 5/Z is shown in figure 6. Over the region of interest H is fairly insensitive to 
changes and, generally speaking, retains a value of about 44. This insensitivity 
is probably due to the assumption of equal spread of vorticity and buoyancy, 
a diffuse vortex tending to gain more vorticity by buoyant generation and lose 
more by diffusion than a more concentrated vortex ring. 

Figure 7 shows the velocity ratio A, plotted against the visible spread a' of the 
cap and the plume spread angle Qa, the rectangle denoting the experimental 
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FIGURE 7. The ratio A,  of cap front velocity to steady plume velocity measured at  the 
same height, plotted as a funotion of the thermal semi-spread angle u' and the plume 
entrainment constant a. The rectangle represents Turner's (1962) experimental results. 
z/ii = 1.75. 
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FIGURE 8. The fraction dV,/dV of thermal fluid obtained directly from the plume plotted 
as a function of the thermal semi-spread angle a‘ and the plume entrainment constant a. 
q z  = 1.75. 

variation in A, and a’ found by Turner (1962). Theoretical values of A ,  for 
a = 0.09, whilst being slightly low, are in reasonable agreement with the experi- 
mental results, and it is interesting to note that agreement is generally good over 
the whole range of values of a. 

The fraction of thermal fluid which has come directly from the plume is given 
as a function of a and a’ in figure 8. For a = 0.09 and in the experimental range 
of a‘, the fraction varies from 0.4 Do about 0-7. This implies that about half the 
thermal fluid is entrained directly from the ambient fluid. This calculation 
should not be considered as being particularly accurate, as the choice of approxi- 
mating the visible radius r by 5 + E may well be inexact and any error in radius 
must of course yield a highly magnified error in volume. The reasonable agree- 
ment between theoretical and experimental values of A,  would seem, however, 
to support this choice of definition of the visible radius, further support being lent 
by the fact that the alternative choice cr,, + L takes a value which is only 7 % 
greater for iF/E = 1.75. 

It has been assumed that the lateral spread of momentum is the same as the 
lateral spread of buoyancy in the plume. Consider now the effect of assuming 
a greater lateral spread of buoyancy as is actually observed in plumes. This 
greater spread must result in an increase in the buoyancy flux advected by the 
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plume and hence tend to increase the thermal momentum, circulation and 
velocity slightly above those values plotted. 

Top-hat profiles, representing constant mean values of buoyancy and velocity, 
have sometimes been used in modelling plumes. For this model, however, it is 
essential that Gaussian profiles (observed experimentally) are used, as top-hat 
profiles give a much exaggerated value for the buoyancy flux at  any height. 
While this is unimportant for models of a steady plume alone it becomes of 
major importance in a starting-plume model, where the buoyancy flux in the 
plume is advected into the thermal, the total buoyancy of which drives the 
vortex flow. 

10. Conclusions 
A similarity solution has been obtained for the vortex ring which propagates 

at the head of a starting plume, the solution being obtained for concentrations of 
vorticity within the ring having a ratio of radius to sub-radius of approximately 
3/Z = 1-75. This value compares favourably with 3 / E  = 1.5, the ratio which 
characterizes the slightly more diffuse spherical vortex which Turner chose for 
his model. Theoretical values of the ratio of the vortex ring velocity to the plume 
velocity were calculated for Z/ii = 1-75, the velocity ratio being dependent on 
the half-angle of spread -:a of the plume and the half-angle of spread a' of the 
thermal. Within the experimental ranges of a and a' the calculated values of this 
velocity ratio were found to be consistent with those measured by Turner. 

For 3/Z = 1.75 the magnitudes of the rate of increase in total circulation, the 
loss of circulation due to diffusion, the gain of circulation due to buoyant genera- 
tion of vorticity and the gain due to advection from the plume are found to be in 
the approximate ratio 2 :  8: 5: 5 .  It is interesting to note that the magnitudes of 
each of the two terms representing circulation production are about the same, 
and that the introduction of ring-wise vorticity from the plume into the cap must 
therefore be comparable to the buoyant generation of vorticity. Since either of 
these terms is greater than the total rate of circulation increase, it is evident 
that neglect of the term representing advection from the plume will result in the 
total circulation decreasing with time. 

This point is of considerable interest if cumulus towers are thought of as being 
vortical flows. While it is not being suggested that a cumulus cloud tower ever 
reaches dynamical similarity, the ratio of height to source width being generally 
too small, it seems likely that a tower will have much the same character as the 
thermal of a starting plume. In  this situation the balance of vorticity production 
and loss must have a profound influence on the tower development. If the only 
source of vorticity, and hence circulation, in the tower is due to  buoyancy then 
the diffusive loss may be greater than the buoyant gain, resulting in a net decrease 
in circulation with time. The vorticity in the tower will then become more diffuse 
and the tower will finally dissipate or be enveloped by other towers. If, on the 
other hand, the net circulation increases with time because of the added influence 
of ring-wise vorticity from below, then the tower will continue to propagate 
upwards with progressively increasing strength. 
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While the actual flow in a cloud tower is complicated by many other factors 
such as the relative values of the lapse rates and rate of release of latent heat, 
this balance of vorticity production and loss must play a major role in the tower 
dynamics. 

I should like to express my appreciation to B. R. Morton and M. J. Manton for 
reading the manuscript and for many helpful discussions. 
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